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ABSTRACT 

Conservative finite-difference approximations are developed for the primitive barotropic model over a spherical 
geodesic grid. Truncation error considerations show that the grid resolution must be at least as fine as 2yzO in order 
for the error not to dominate the mass flux calculations. When the fine resolution is used, the approximations are 
seen to be quite good. Comparisons are made with schemes in use today with approximately the same resolution 
applied to the same initial condition. 

1. INTRODUCTION 
In  recent years, numerical experimenters have been 

studying models of the general circulation of the atmos- 
phere over the entire earth. The use of a spherical domain 
has led to the unexpected difficulty of defining a satis- 
factory net of points at  which discrete approximations 
are to be applied. Many schemes have been suggested 
and tried, but all have some unfavorable property. 

A homogeneous covering of the sphere seems to be 
ideal for numerical integration. However, a completely 
homogeneous net is impossible if it consists of more than 
12 points. Quasi-homogeneous triangular grids have been 
defined over the sphere by Vestine et al. (1963), Sadourny 
et al. (1968), and Williamson (1968). Sadourny e t  al. 
(1968) and Williamson (1968) have developed and tested 
discrete approximations for the nondivergent barotropic 
vorticity equation over these grids. Their results are 
more favorable than those of the more usual spherical 
grids in use today. 

In the following report, conservative approximations 
over the spherical geodesic grid are developed and tested 
for the primitive barotropic model. This spherical develop- 
ment closely follows the development in Cartesian geom- 
etry (Williamson 1969). 

Let i, j, and k be unit vectors on the sphere in the 
eastward, northward, and vertical directions, respectively ; 
and let V be the spherical horizontal gradient operator. 
Then the equations governing frictionless, horizontal, 
two-dimensional motion on a sphere can be written 

- V (VhV ) - F X hV- V(gh2/2) (1) 

(2) 

at 
and 

%=-v ah (hV) 

where h is the height of the free surface, V=ui+vj is the 
vector velocity, and F equals V+(u/u) tan 8)k. The (I is 
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the radius of the sphere, j is the Coriolis parameter, e is 
the latitude, end g is gravity. 

2. CONSERVATIVE APPROXIMATIONS 
The discrete approximations are based an area inte- 

grals over the secondary grid areas defined by the perpen- 
dicular bisectors of the grid triangle sides. The integrals 
of the divergence can be converted to line integrals using 
Gauss' Theorem, resulting in 

and & MA=-& (Vh) 8 ndS 

where n is the outward unit normal to the curve S bound- 
ing the area A. 

A local polar indexing is used to write the difference 
equations (Williamson 1969). Let k denote the number 
of triangles surrounding the grid point in question. For 
the spherical geodesic grid, k is either five or six. Con- 
sider first a general form of approximation to the diver- 
gence of some vector quantity B: 

D= B .  ndS. 4;s 
If we assume the value of B along the i th segment 
S, of S is constant and given by BIB, ,, the approximation 
to the divergence becomes 

where S,  denotes the great circle segments forming the 
secondary grid area. By the line integral of the unit 
normal vector, we mean the line integral of the two com- 
ponents of the unit normal written in spherical polar 
coordinates. It is easy to show that many approximations 
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used in calculating fluid flow a,e of the general form of 
equation (5 ) .  For a grid of the kind used by Washington 
and Easahara (1970)) the line integrals of the compo- 
nents reduce to the very simple forms f iAe, or f jAA. 
In  the case of the grid developed by Kurihara, they 
take the form (in Gary's 1969 notation) of f is,, or 
f jS,. The line integrals of the normal components in 
the spherical geodesic grid do not reduce to anything 
quite so simple. In fact, the expressions for the integrals 
along arbitrary great circle grid segments are di&icult 
to calculate analytically. In this study, they are calcu- 
lated numerically. It should be pointed out that the 
coefficients can be calculated with a very high degree 
of precision since they need be calculated only once for 
each grid orientation and resolution. We denote these 
line integrals by a, that is, 

We now consider an approximation to  the pressure 
gradient term 

G= VMA. 
S A  

Written in spherical coordinates, the integral becomes 

or 

After neglecting the spatial variation of the unit vectors 
within the secondary grid area, the first integral on the 
right-hand side can be shown to be a line integral of h 
times the outward unit normal and can be approximated 
by 

5 i=1 (h)1/2,2i* (7 ) 

If, in addition, the variation of h in the secondary grid 
area is neglected, the second term on the right-hand side 
becomes 

We are nom able to write a general approximation to 
equations (3) and (4). Using the approximations (5) and 
(9)) the governing equations become 

and 
k --f 

Ao $=-E i = l  (hV)l12,f Cf. 

Let 3 den0 te the finite-difference equivalent to integra- 
tion of a quantity $ over the sphere, that is, 

where the summation is taken over all grid points and A, 
is the area of the sphere. 

Formation of the discrete energy equation shows that 
for (10) and (11) to conserve energy, the following rela- 
tions must hold 

and 

The first relation (12) insures that the space differences 
will not produce nonlinear instabilities; the second 
relation (13) provides for consistent average conversion 
between kinetic and potential energy. 

We note that when the curvilinear coordinate system 
reduces to the Cartesian system, equations (10) through 
(13) reduce to the corresponding Cartesian equations (10) 
through (13) in Williamson (1969). 

Relation (12) can be satisfied if we take 

(VhV)1/2. ,=4(Vo+V1, f)(Vh)1/2, $ (14) 

since, as in the Cartesian case, 

where h* denotes some average value of h. This integral 
can be written approximately as 

Terms (7) and (8) can be combined for an approximation 
to the pressure gradient 

k 
GG.C i=l (h)l,2,ii3f-& i= 1 h*(& j>j. (9) 

k + c vo VI(VMI/B. f G = O .  
#=1 

One possible definition of (Vh)llz, is 

(V&2, f=+(hoVo+hVf). (1 5) 

The energy conversion relation (13) then holds provided 
that 

and 
(h2)~,z,f=hohf (1 6 )  

(P)* =?g. (17) 



51 4 MONTHLY WE 

Substitution of (14), (15), (16), and (17) into (10) and 
(11) results in scheme Is: 

and 

The special form this scheme takes when applied to a 
regular spherical grid is the same as the scheme of Grimmer 
and Shaw (1967). 

A second possible definition of ( V h ) l ,  is 

Relation (13) is now valid if 

Substitution of (14), (18), (19), and (20) into (10) and 
(11) results in a second energy conservative scheme 
given by scheme 11s: 

and 

The special form which scheme 11s takes when applied to a 
regular spherical grid is the same as Kurihara's scheme as 
studied by Gary (1969). 

3. NUMERICAL EXPERIMENTS 

To evaluate these schemes for use with atmospheric- 
like motions, we adopt the initial conditions used by 
Phillips (1959) and subsequently by other investigators. 
These conditions are those of a Neamtan (1946) wave 
that, in a nondivergent barotropic atmosphere, propagates 
eastward with a constant angular velocity and without 
change of shape. The analytic solution is not known for 
the divergent model considered here. However, several 
investigators, namely Grimmer and Shaw (1967) and 
Gary (1969), have used these same initial conditions to 
test difference approximations for the same model. Our 
results can be compared with theirs, and hence the dif- 
ference schemes can be compared with each other. These 
initial conditions have another advantage; since they are 
analytic, the exact initial fluxes can be calculated and 
compared with the discrete initial fluxes. 
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For the following integrations, the spherical geodesic 
grid is oriented so that the North and South Poles are 
grid points (fig. 4, Williamson 1968). This orientation 
is useful for our evaluation run because the grid then has 
a period of five around the sphere. If the initial conditions 
also have a period of five, only one-fifth of the compu- 
tations need to be performed. Our experiments take 
advantage of this feature. 

This orientation is not desirable for general usage, since 
the Poles must be treated separately when spherical polar 
coordinates are used. In  this case, the velocity components 
u and 21 are not defined at the Poles. Since there is little 
happening at the Poles with the Neamtan wave, the 
velocity V is set equal to zero, and the height h is assigned 
the average value of the five closest points when these 
polar values are needed by the difference operators. 

The initial velocity V is nondivergent and given by the 
stream function 

* = -  a2w sin e + a2K cosR8 sin e cos Rh 

where a is the earth's radius, w and K are 7.848Xl(P-s 
sec-I, and R is taken equal to 5 rather than 4, which 
Phillips (1959) used. The initial height field is taken so 
that h and IC. satisfy the balance equation, and is given by 
equation (38) in Phillips (1959). 

A 6-day (6,912-time step) integration with a 75-sec 
time step was carried out over the 5" grid using centered 
time differences. A forward time step was used initially. 
Figure 1 shows the height field at  2-day intervals. The 
region covered by each figure is ,-go' to +9Q' latitude 
and 0" to 150' longitude, a little over two periods. The 
wave speed is slightly over 17" per day compared with 
an analytic value for the nondivergent case of 19.8. The 
fields become very jagged, and the solution is not good 
at  day 6. 

Figure 1 also shows the results of an 8-day (18,432-time 
step) integration with 37.5-sec time step over a 2jP grid 
using centered time steps. The most noticeable feature is 
the two-grid-interval noise superimposed on the pattern. 
Such phenomena are present in other schemes (Okamura 
1969) and can be avoided by changing the space phasing 
of the variables (Masuda 1969, Okamura 1969) or by 
adding a diffusion term or space smoothing. 

Disregarding this two-grid-interval noise, these results 
can be smoothed by eye and compared with previous 
investigations. For the first 4 or 5 days, when the original 
wave is still clearly defined in the pattern, the wave 
moved with a speed slightly greater than 18' per dny. 
Again, the analytic value for the nondivergent model is 
about 19.8. 

Gary (1969) compared two schemes currently being 
used for general circulation models: Kurihara's (1965b) 
and Kasahara and Washington's (1967), hereafter referred 
to as centered." Gary concluded that the Kurihara 
scheme is more accurate than the centered scheme for a 
given A8. However, because of the space-time phasing of 
the variables, Gary feels the Kurihara scheme at  A0 
should be compared with the centered scheme at approxi- 

I (  
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FIGURE 1.-Height field from 5" and 2%" integrations using scheme 
11s with centered time differences. 

mately A0/& Further information he gives suggests 
that under these conditions the schemes are probably 
equally good. Gary also concluded that the Kurihara 
scheme with a "uniform mesh" spacing, in which the 
number of grid points on a latitude circle decreases uni- 
formly from Equator to Pole, produces less accurate 
results than one in which AA was constant and equal to 
A0 up to around 0=65" and then increased. 

Recent experiments by Dey (1969) and Rao and 
Umscheid (1969) show that marked improvements in the 
integrations result when the longitudinal grid spacing near 
the Pole is decreased. However, such a decrease inflicts a 
serious decrease on the time step through linear stability. 
Dey decreased his time step by a factor of 3, and Rao and 
Umscheid decreased theirs by a factor of 10. 

With this in mind, we will compare our results with those 
of the Kurihara scheme over a regular spherical mesh, not 
the uniform mesh as originally defined by Kurihara 
(19653). We will consider the case where the resolution at  
the Equator is approximately equal to ours. This is Gary's 
case 503.1 or his figure 8. This case has a grid size of about 
2.65" at  the Equator with the resolution increasing up to 
about 65" latitude. This grid has 7,044 points compared 
with 7,682 points in the 2jh0 spherical geodesic grid. 

Our patterns evolved very closely to those of Kurihara's 
scheme. The main difference is that by the eighth day his 
patterns become weak, due to a diffusion term added, for 
stability. Essentially, these schemes produce very similar 
results for this type of initial condition, and we conclude 
that in this respect the schemes are equally good. 

We can also compare our results to Gary's figure 9, 
which is the solution from Eurihara's scheme applied to 
his uniform grid. Our results are seen to be better than 
these. 

We cannot compare the energy conservation properties 
of these schemes since Gary always used a diffusion term 
for stability. Hence the energy in his cases always de- 
creased. The total energy per unit area in our 2% inte- 
gration remained in the range 4.61564 X lo8 to 4.61588 X 

los during the entire 8 days. The energy variation in the 
5" integration was of the same order, about 0.003 percent. 

From these comparisons, we conclude that the space 
differences over the spherical geodesic grid are a t  least as 
good as those in use today for general circulation models 
when applied to a simple wave. However, when the 
spherical geodesic schemes are combined with centered 
time differencing, a very small time step is required for 
linear stability. One of the reasons for using a quasi- 
homogeneous grid is to eliminate the convergence of grid 
points a t  the Pole and the very small time step this 
convergence imposes. It is not known why these schemes 
coupled with centered time steps required such a small 
time step. The linear stability condition is difficult to 
compute because the coefficients of the finite-difference 
approximations are different for each grid point and are 
not known analytically. The time step needed to keep 
these schemes stable is an order of magnitude smaller 
than stability limit for simple schemes centered in space 
and time. 

The Matsuno, or Euler-backward time differencing 
(Kurihara 1965a), was tried to determine the effect of 
a damping scheme on the approximations. A 20-min 
time step was found to be stable for the 5" grid, and a 
10-min step for the 2P grid. This is more consistent with 
the normal linear stability criterion and is up to four 
times longer than would be necessary for the present 
general circulation models a t  a similar resolution. Time 
steps that have been used are: Mintz (1965)) At=12 rnin 
for A0=7O; Easahara and Washington (1969), At=6 rnin 
for A8=5O; and Kurihara and Holloway (1967), At=7.5 
min for A8=4O. 

Height fields for various days are shown in figure 2 
for the 5" and 2 g  grid using Matsuno time differences. 
The time steps used are 20 min and 7.5 min for the 5" 
and 2jP grids, respectively. With a 10-min time step on 
the 2%' grid, a two-grid-interval wiggle appeared in limited 
areas a t  various times and then disappeared. No sign of 
this phenomenon was seen with the 7.5-min time step. 
Figure 2 can be compared with figure 1. The height field 
patterns are very similar. The Matsuno scheme produces 
a slightly slower phase speed than the centered scheme. 
The Matsuno scheme also produces a slight damping. 
The total energy decreased by 0.4 percent during the 
8-day run over the 2%' grid. Other than these slight 
differences, the same conclusions can be made for the 
spherical geodesic differences combined with the Matsuno 
scheme as were made when they were combined with the 
centered scheme. 

4. FLUX APPROXIMATIONS 

To better understand how these schemes work, we 
consider the initial flux approximations. The analytic 
initial conditions permit the initial fluxes to be calculated 
analytically and compared with the discrete fluxes. This 
will help explain why the 5" grid produced poor results. 
First, it will prove useful to introduce another approxi- 
mation to the mass flux. 
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DAY 1 DAY 2 

DAY 2 DAY 4 

FIGURE 2.-Height field from 5" and 2%' integrations using scheme 
11s with Matsuno time differences. 

The mass flux can be written as the sum of an advection 
and a divergence term 

V * (hV) = V V h  + hV e V ,  

and each term can be differenced independently. From 
(9) and (5) we have approximations for V h  and V - V ,  
namely 

1 k  -3 

Ao f = l  
v * v=- i(Vo+Vt)*Ct 

and 

Thus, we can write an approximation 111s as 
scheme 111s: 

and 

This approximation has the same general form as Is and 
IIs, and, as will be seen, gives very similar results. To study 
the initial fluxes, we use a wave-number4 initial condition 
rather than a wave number 5.  This prevents the grid 
pattern and wave pattern from coinciding. 

The left column of figure 3 shows the initial analytic 
flux fields. The two other columns show the flux fields as 
calculated by scheme 11s over a 10" and 5" grid. The 
momentum fluxes are seen t o  be quite good, but the mass 
flux only begins to resemble the analytic field with the 5" 
grid. The pressure gradient approximations, not shown, 
are at least as good as the momentum flux approximations. 
Thus, we will confine the ensuing discussion to the 
momentum and mass flux. The question we wish to con- 

DAY 4 DAY b 

DAY 6 DAY 8 -- 

sider is why the mass flux approximations are so much 
poorer than the momentum fluxes. 

Figure 4 shows the approximations of scheme 111s for 
the 10" and 5' grids. The mass flux is almost identical with 
that from scheme 11s. Of the two individual parts of the 
mass flux, the advection term is a good approximation to 
the mass flux, but the divergence term, which should be 
ze;o, is poor. In  fact, the approximation values of the 
divergence are larger than the mass flux for the 10" grid 
and almost as large for the 5" grid. Examination of the 
truncation error will explain why the divergence approxi- 
mation is so poor. 

5. TRUNCATION ERROR 
To study the truncation error, we apply the difference 

scheme over a stencil of points more naturally suited to 
polar spherical coordinates. Consider four grid points 
around a central point such that two have the same lati- 
tude as the central point and two have the same longitude, 
although they need not be the same distance from the 
central point (fig. 5). To apply the schemes to this stencil, 
we need the line integrals of the normal vectors and the 
area. These are given by 

and 
&=2a2 sin AO* 2 COS @AX* 

where 
AX*= 4 (AXi+AX.q), 

AO*= 6 ( A ~ ~ S A O J ,  

et=eo++(Ae2-Aee,). 
and 

In the following, approximations over two cases of thk 
stencil are considered. The first case is called regular spher- 
ical diferences. At each grid point of the 5' spherical geo- 
desic grid, the stencil is defined so that AX1=AX3=A02= 
A04=D. At each of these newly defined stencil points, the 
appropriate analytic values are assigned to h, u, and v. 
The difference schemes are applied over this new stencil. 
We note that this is not appropriate for integrating in time, 
but rather is only appropriate for studying the approxi- 
mations to the intital fluxes. 

The second case considered is called random spherical 
dijerences. In this case AXl, AA3, ABz, and A04 are given by 
D(l.O+O.lR) where D is the mean value and R is a 
random number between -1 and + 1  with a rectangular 
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FIQURE 3.-Initial analytic fluxes and scheme Is approximations over 10" and 5' grids. The contour intervals are given in the upper right 
comers. 

distribution. A 10 percent variation was chosen to corre- 
spond to the variation in the grid length of the spherical 
geodesic grid. In  the following, we will refer to lo", 5" and 

The quantities in the difference approximations are 
expanded in Taylor series around the center point 

2%' stencils. This indicates the value of D for both the 

We first consider the truncation error over the random 
spherical stencil. Schemes Is and 11s produce almost 
identical results. Therefore, since scheme Is is a little 

+ r = + o + ~  " 1  Ti AX; $, for +=v or h and i=1 or 3, 

+t=+o+c " Ti 1 Ae{ -, #+I3 for +=v or h and i=2 or 4. 

regular and random stencils. j = l  3 -  
and 

j=l 3. ae' 
The following simplifications are made in the expansions simpler, we will consider it in the following. The terms 

considered are : 

scheme Is, mass flux 

1 These simplifications affect the results by less than 1 
percent, not by orders of magnitude. 

The Taylor series expansions for the approximations are 
& (hoV0ShtVt) &; M"-2Ao j=1 

scheme IIIs, advection term 2 

then 

scheme IIIs, divergence term A2= - V Vh-6hAzx-68A2e+0(A2), 

and 
scheme 1118, mass flux 
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9.0 x 54 

6.0 x 

9.0 x  IO-^ 

6.0 X I d 3  

9.0 x 1d3 

FIQURE 4.-Scheme 111s approximations over 10' and 5' grids. 
The contour intervals are given in the upper right corners. 

The second column in table 1 gives the maximum abso- 
lute value of the above terms for wave number 5. With 
the random stencil defined earlier, l ( A k l -  AX8) /2 )  and 
( ( A 0 2 - A 0 4 ) / 2 (  are less than O.lAX* and Q.lAB*,  respec- 
tively. Thus, the maximum value of the truncation error 
for the advection term of scheme 111s is bounded by 
Q.1AX*IA2,( or Q.1AO*lA2sl, and similarly for the other 
terms. These error bounds are listed in table 1. For com- 
parison, the right side of the table lists the maximum 
absolute values of the momentum and mass fluxes and 
the advection terms for wave number 5. 

vol. 98, No. 7 

.A@, 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

----- 

I 
I 

4 

PIGVRE 5.-Random stencil. 

Comparison shows that the maximum possible errors in 
the monentum flux approximations are less than the ana- 
lytic values even for the 10" stencil and are a t  least an 
order of magnitude smaller for the 23P stencil. This is not 
the case for the mass flux. Here, the maximum possible 
errors are the same size as the mass flux even with the 5" 
grid. Examination of scheme 111s in the table shows this 
error can be attributed to the error in the divergence term. 
The error in the divergence does not adversely affect the 
momentum flux because the momentum flux is three orders 
of magnitude larger than the mass flux. But since huV-V= 
u(hV*V) and u is less than 100 m sec-l, if the error in the 
divergence term is the same order as the advection term 
in the mass flux, the error in the divergence term is at  
least one okder smaller than the momentum flux. 

Table 1 lists error bounds and compares them with the 
analytic values of the continuous terms. Of course, the 
actual errors are not necessarily as large as the bounds. 

Actual computations over the random stencils show that 
the errors are significant for the 10" and 5" random stencils. 
The patterns of the mass flux are as irregular as those over 
the spherical geodesic grid. The mass flux begins to resem- 
ble the actual values with the 2%'" stencil; however, the 
contour lines are still quite ragged as in figure 4. On 
the other hand, the momentum fluxes over the random 
stencils are quite good, even for the 10" stencil. 

When these schemes are applied to the regular stencil, 
the firsborder error term automatically becomes zero. 
Computations over the regular stencil show that the errors 
in the mass flux become negligible even for the 5" stencil. 
A contour of the mass flux over the 2%" regular stencil is 
almost the same as the analytic values in figure 3. 

The above error studies show that the small irregu- 
larities of the spherical geodesic grid make the usual type 
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TABLE 1.-Error bounds for random stencil 

Maximum Maximum 

value value 
Term absolute 10’ 50 2%” absolute Term 

+ 
Q1r.i 3.9XllV 6 8 x 1 8  3 .4X18 1.7XlW 

2.4X10’ V-(Vhu) 
+ 
Q ~ e - i  9.4X101 1.7X18 8.2X10-1 4 . 1 X l W  

Q1r.j 1.2X103 2.1X101 1. lXlot 5.3X100 
--t 3.4X101 V -  (Vb) 
Qia-J 1.6XlCP 2.8X18 1 .4X18 7.OX10-1 

+ 

MIA 2. oxioo s 7 x 1 ~  i.~xio-2 9.zxio-a 
MI 8 1 . 3 ~ 1 ~  2 . 3 ~ 1 0 4  1 .2~10-2  F,. 7x10-8 ’* 3 x 1 ~ 2  ‘*Iv 

An 1.9~10-1 3 . 3 ~ 1 ~ - 3  1 . 7 ~ 1 ~ - a  s. 3x10-4 

Dzr 2. ixioo 3. ’ 1 ~ 1 0 - 3  i .gxicr2 9 . 2 ~ 1 ~ - 3  
D28 1 . 3 ~ 1 0 0  2.3~10-a 1 . 2 ~ 1 0 4  5 . 7 ~ 1 ~ - a  O 

A28 8.6XlO-2 1.5Xl0-a 7.5XlO-r 3.8XlO-r 1.3x104 V-vh 

h V * V  

of conservative approximations first order in space. This 
first-order error can be quite important in calculating the 
mass flux. I t  is not until the grid resolution is as fine as 
2%” that the error becomes small enough to perform 
integrations in time. 

6. CONCLUSIONS 

In  an earlier paper (Williamson 1968), a spherical geo- 
desic grid was introduced. Such a grid is quasi-homogene- 
ous with about a 10 percent variation in the grid interval. 
Difference approximations were formulated for the non- 
divergent barotropic vorticity equation. Test integrations 
showed that this model worked quite well over this grid. 

The primitive model formulated in this paper shows that 
the small variation in grid interval does introduce an 
unexpected problem. Conservative difference schemes that 
are second order when applied to a regular grid become 
first order when applied to a nonregular grid. In  the models 
considered, the first-order error is significant only in 
calculating the divergence. As WBS mentioned earlier, there 
is no trouble in integrating the nondivergent barotropic 
vorticity equation. For the primitive model with a Neam- 
tan wave initial condition, the error can be significant. 
This is seen in the integration over a 5” grid. 

The truncation error can be made insignificant by taking 
a fine-enough mesh. This is seen with the 2)P integration. 
The need for a fine mesh for a satisfactory approximation 
is not necessarily a handicap. Studies by Grammeltvedt 
(1969) and Gary (1969) indicate B a t  at  least 16 points 
per wavelength are needed for a satisfactory approxima- 
tion to the phase velocity even with second- and fourth- 
order schemes. Thiis, the 2p grid is suitable up to wave 
number 9. An even finer grid is needed for smallei waves. 

Once the mesh size,is small enough, the spherical geo- 
desic schemes are seen to produce good results. Compared 
to Kurihara’s scheme over his uniform grid, the spherical 
geodesic schemes are seen to be much better. On the other 
hand, the spherical geodesic schemes produce the same 

386-301 0 - 70 - 5 

results as the Kurihara scheme over a regular spherical 
grid. The spherical geodesic schemes are also slightly 
better than the scheme of Kasahara and Washington. 

The particular time differencing combined with the 
spherical geodesic differences is important. Centered time 
differences produce very good results, especially with 
regard to energy conservation. However, a very small 
time step is needed for stability. In  fact, the time step 
must be almost as small as would be needed with a regular 
spherical grid if there were no skipping of grid points 
near the Poles. 

The Matsuno time difference, on the other hand, re- 
mains stable for a much larger time step. A time step up 
to four times longer than the time steps of the other 
spherical schemes is possible. Depending on the com- 
plexity of the other schemes, this could mean a savings of 
four in computer time. A more realistic figure is a little 
less than three because the spherical geodesic schemes 
use six surrounding points rather than the more normal 
four. 
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CORRECTION NOTICE 
Vol. 98, No. 4, Apr. 1970: p. 271, last par., 3d line, -1 should be 

read as the superscript instead of 1;  p. 274, 1st line below equations 
(15), ((T-1) /At) should be read instead of (r-l/At); p. 278, section 9, 
22d line, haroclinic should he read instead of barotropic. 


